Reducing run-times of excitable cell models by
replacing computationally expensive functions with
splines

Michael Clerx and Pieter Collins

Abstract—Numerical simulation of muscle cells and tissue
is an established tool in cardiac electrophysiology, where the
electrical behavior of excitable heart muscle cells is commonly
modeled as a stiff, non-linear system of ordinary differential
equations. A common feature of this system’s right-hand side is
the heavy use of computationally expensive univariate functions
of the membrane potential. In this article, we investigate the
performance benefits of replacing these functions with cubic
spline approximations in an automated model simplification
process. Clear performance gains were found when evaluating
the right-hand side in isolation and when performing multi-
cellular simulations using a simple forward Euler method.
Single cell simulations run with an adaptive method saw smaller
gains due to a higher overhead from the solver. A parallel multi-
cellular simulation was also investigated, but the overhead of
the implementation overshadowed the evaluation time of the
right-hand side.

Index Terms—Biological Systems; Numerical and Symbolic;
Systems Biology

I. INTRODUCTION

Numerical simulations based on models of ion channels and
transporters are an established tool in cellular cardiac elec-
trophysiology [1, 2]. This field, which studies the electrical
behavior of heart muscle cells (myocytes) and its relation
to muscle contraction, can deepen our knowledge of the
fundamental processes underlying our heart beats and pro-
vides insights into life-threatening conditions of arrhythmia.
The main components of these models: ion concentrations,
channels, transporters and fluxes can be measured in isolation
and described using ordinary differential equations (ODEs).
Combining these components into cell models allows the
effects of molecular differences to be investigated on a
cellular level. For example, the effects of genetic mutations
on channel proteins can be measured in vitro, leading to an
updated ion channel model that can then be incorporated
into existing models of the cell. By coupling adjacent cells
through a current invoked by the difference in their potentials,
multi-cellular models of muscle fibers or patches of tissue
can be created.

Michael Clerx is with the Department of Knowledge Engineering and
the Cardiovascular Research Institute Maastricht, Maastricht University, The
Netherlands. michael.clerx@maastrichtuniversity.nl

Pieter Collins is with the Department of Knowledge Engineering, Maas-
tricht University, The Netherlands.
pieter.collins@maastrichtuniversity.nl

Since their introduction in the last half of the 20th century,
ODE models of myocytes have become increasingly com-
plex. From a computational efficiency point of view mod-
ern models contain many expensive-to-evaluate functions,
especially univariate functions of the membrane potential V'
making heavy use of the exponential function [3, 4, 5, 6].
As more is learned about the complexity of the mammalian
heart, the number of equations used to model a single cell
is growing. This conflicts with the need to run simulations
fast and the desire to create personalized models of the whole
human heart, which contains roughly 5-10% of such cells [7].

In this paper we investigated the performance gains to
be had from replacing computationally expensive parts of
the right-hand-side (RHS) of the differential equations with
easier-to-evaluate approximations. Numerical experiments
were run to show the effects of simplifying with cubic spline
approximations on the RHS evaluation times. We examined
the influence of using a simplified RHS in three scenarios:
single cell simulations using an advanced numerical solver,
multi-cell simulations without parallelization, and multi-cell
simulations run in parallel on a graphics processing unit
(GPU).

To the best of our knowledge, no similar attempts have
been reported. Although Mirin et al. [8] report using rational
function approximates for the same purpose as part of a
larger effort to simplify the model by ten Tusscher et al. [9],
our approach differs in two ways: Firstly, in our approach
we use splines, which are more stable and flexible when
approximating functions with strong localized variations and
may evaluate faster, and secondly, instead of simplifying one
specific model, we have described and implemented a generic
approach.

II. PRELIMINARY CONSIDERATIONS

A cell model’s RHS can be broken down into two parts:

dv 1

V) = T A Iion P Is im
7 C ion (V1) + Lstim]
du

E - f(va u)

(see also [10]). Here, V is the cell’s membrane potential, C'
is the membrane capacitance and the vector u is a collection
of channel protein states, ion concentrations, and sometimes
other variables such as fractions of bound enzymes. From

these variables a set of ionic currents is calculated as
I; = g; (V,u) (V — E;) where F; is an equilibrium potential
for the ion type and g; (V,u) is a model for the ion channel’s
conductance'. An external stimulus Iy, is periodically
applied to drive the system. It should be noted that f (V,u) is
non-linear and typically stiff. In electrophysiological terms,
it contains slow and fast currents. In all models, the fast
sodium current rises and falls in a time span of < 5Hms,
whereas other currents, for example the slow delayed rectifier
potassium current take several seconds to reach their peak.
For a classic example of a cardiac myocyte model and the
accompanying equations see [11] or [12], a good example
of the complexity of modern models is found in the detailed
appendix to [3]. An example of a reduced cell model is given
in this paper as Table I. These equations describe the Morris-
Lecar model [13], a reduced form of the original neuronal
model by Hodgkin and Huxley [14] which contains only two
state variables. In this example, the external input forcing the
system is given as the dimensionless value pacing.

Table 1
THE REDUCED MORRIS-LECAR MODEL
dVv 1 dw Winf — W
2L = — 2 [Lion + Tsts = =0.04
dt C [on + stlm] dt Weau
¢=20 Ica = gca (VﬁECa)
Lion = Ik + ICa + Ileak ECa =120

Ix =gk (V- Ek)
Ex = —84 1

Minf =
Neax = 2 (V + 60)
Istim = —80 X pacing

g = 8w
Winf = % [1 + tanh (%)]

Wau = 1/ [cosh (%)]

V(t = 0) = —60.86 W (t=0)=0.015

An important feature of these models is that they contain
many computationally expensive functions depending only
on the membrane potential V. We automatically identify
these functions and replace them by spline approximations
that are faster to evaluate. Most of these functions are found
in ion channel models, which are a phenomenological class
of models so that no valuable information is lost by altering
the form of the expression. Furthermore, the precision of
cell models is limited, and, as we illustrate in the next two
sections, the stability of the ODE integrator takes precedence
over the accuracy of the evaluation of the RHS.

A. Single cell simulations

For detailed modern single-cell models the RHS is a
costly function to evaluate and the system of equations is
stiff. As a result, higher order adaptive schemes that require
multiple RHS evaluations or suffer from reduced stability
fail to produce any performance benefits. Implicit methods
offer greater stability and therefore bigger step sizes, but
the need to approximate the next solution often involves

'In fact, this is Ohm’s law using conductance g =
resistance R.

1/R instead of

more RHS evaluations which can counteract this benefit?.
As a result, the explicit forward Euler method has remained
a competitive choice. A difficult to implement, but much
faster approach is to use an implicit adaptive multi-step
method, e.g. CVODE [15]. The multi-step approach means
only a limited number of RHS evaluations per time step
are required; in most cases a single evaluation per step
is sufficient (see Figure 2, part D). Myocyte models are
typically paced (forced) periodically with a block wave
stimulus, which introduces two discontinuities per cycle. At
these points, it is necessary to reset the simulation routine,
leading to a higher number of steps around those points.

B. Multi-cell simulations

Single cell models can be used for multi-cellular simu-
lations by simply duplicating the single cell state vector.
Without any interaction between the cells, the system’s
Jacobian takes on a diagonal block structure. Connections
between the cells are then introduced in the form of a
diffusion current. For each cell ¢:

Taiee i = Zgij Vi=V;)
J

Where the sum is over all neighboring cells and the cell-
to-cell conduction g;; is assumed constant. This diffusion
current connects all membrane potentials to that of their
neighbors, but leaves the term %% = f(V,u) untouched.?
The system now becomes:

dV; 1

dt = _5 [Iion (‘/27 ui) + Istim,i + Idiff,i]
dui

dt - f (‘/;7 ul)

The most common strategy for running multi-cell sim-
ulations is the explicit forward Euler method. There are
a number of reasons for this. First of all, in a multi-
cell simulation, the evaluation time of the duplicated RHS
becomes extremely high, so that methods requiring multiple
evaluations all suffer from poor performance. Secondly, in
the single cell case the system’s fast dynamics are highly
localized in time (about Sms per 1000ms for a heart rate
of 60bpm) and occur at the onset of excitation. In a multi-
cell scenario each cell’s excitation triggers its neighbors’
excitation with a small delay, causing the fast dynamics (and
the need for a small step size) to be spread out over a
much larger time. In extreme cases (which are often of high
scientific interest) some part of the tissue is undergoing rapid
changes at any given time. This limits the utility of adaptive
methods. Finally, when performing parallelized multi-cellular
simulations on GPU devices the cost of memory access and
synchronization is such that a simple forward Euler scheme is

2The Jacobian of a cell model is typically not available analytically. For
some good examples see [3, 4, 5].

3This is a simplification, as the diffusion current must be carried by one
or more species of ion. Taking this into account, any ionic concentrations
in the term u would also be affected by the Ig;g.

almost always faster than a more delicate approach requiring
the storage of multiple state or derivative vectors.

Garcia et al. [16] report experimenting with different
adaptive Runge-Kutta pairs before selecting the simplest
tested method: an explicit Euler / Heun pair. They report a
25% speed-up over fixed size forward Euler. Unfortunately,
little details are given and we were unable to reproduce this
result.

C. Software & model implementations

All simulations and benchmarks were carried out using
the Myokit modeling framework.* Models used were either
implemented following the equations published in source
files and appendices or imported from the CellML model
repository [17]. Myokit is implemented in Python, but uses
code generation and on-the-fly compilation of C-extensions
to achieve high performance. Simulations are run in three
stages: first a model file is read and parsed into a structured,
symbolic representation of the model’s equations. This sym-
bolic model is then passed on to a simulation class that uses it
to generate, compile and link to a custom simulation object.
Finally, the experiment is run and a pointer to the results
is passed back to the caller. An advantage of this method is
that it allows symbolic manipulation of the model’s equations
before simulation, without the drawbacks of actually running
simulations using the symbolic types.

III. RESULTS
A. Spline fitting procedure

A cubic spline function g (V) was fit to each selected

function f (V) on the interval I = [—100mV, 150mV].
. N . . df _ dg
Spline coefficients were set by imposing - i at the

endpoints of I, setting ¢g(x;) = f(x;) at each knot x;
and then solving the resulting linear system. The absolute
and relative error in the fit were estimated by sampling
both functions at 1000 evenly spaced points on the selected
interval and calculating

max |f — g|
€abs

max f — min f

€abs —

€rel

over the full sample. The tolerance was set to eyps < 1073
and e;e; < 107°. Whenever these limits were exceeded an
extra knot was added at the point with the highest error.
If a set maximum number of pieces (100) was reached the
procedure was halted and an error returned, marking the
function as unfit for approximation.

To show the performance advantage of spline approxima-
tions, cubic spline approximations using 32-piece® splines

4Myokit, or the Maastricht Myocyte Toolkit, is an open-source Python-
based software package designed to simplify the use of numerical models in
the analysis of cardiac myocytes developed at Maastricht University. Source
files and documentation are available from http://myokit.org

5Splines with 32 pieces provided accurate fits in each of these examples.
As can be seen in part B of Figure 1, the evaluation time of a full spline
depends only weakly on the number of pieces used and using, for example,
a 64-piece spline gives roughly the same results.

Table II
PERFORMANCE GAINS FOR SINGLE FUNCTION APPROXIMATION

l Function [Toriginal (ns) [Tspline (ns) [Tspline/Toriginal

To 259 5.08 20%
i 238 507 21%
Fa 774 510 19%
T3 538 507 9%
Ta 244 5.10 21%
7 133 510 1%

were created for the following functions:

fo (V) = exp (V/100)

f1 (V) =exp (0.01V)

f2 (V) =1/[1+exp ((V +40)/ —10)]
f3(V)=1/[7Texp((V +12) /35) + 9exp (— (V + 77) /6)]
fa(V)=1/[1+exp (—0.1(V + 40))]

f5(V)=1/[7exp (0.03(V +12)) + 9exp (0.2 (V + 77))]

The first function is a minimal example of an exp function,
scaled to the range I. The second function shows the perfor-
mance benefit of multiplication over division, compared to
the run-time of an exp evaluation. The third and fourth equa-
tions are adapted from the fast sodium channel formulation
of [4] and are typical examples of the kind of equation we
hoped to simplify: The first, fo represents the steady-state
value of one of the state variables, m, and defines a sigmoid
curve. The second, f5 is the voltage dependent time constant
with which m approaches its steady state value and defines
a “hat” or “bell” shape over I. The final two equations show
the effect of replacing division operations with multiplication
in fo and f3.

The performance gains are shown in Table II. As can
be seen, the performance of the splines is invariant with
respect to the run-time of the original function, leading to
large speed-ups for complex expressions. This illustrates the
potential advantage of spline approximations in the RHS.

B. Isolating expressions for approximation

A symbolic version of the model’s equations was obtained
and scanned for univariate functions of V. Care was taken
to include functions both directly dependent only on V' and
directly dependent on other functions themselves a function
of only V. For the selected functions, a spline was calculated
using the methods described earlier. A piecewise polynomial
with the calculated coefficients was then inserted into the
symbolic model representation and finally the model was
exported to standard C or OpenCL.°

To estimate the maximum speed gain from this method,
the model’s RHS was evaluated either in full or with-
out the selected equations. The ratio between run-times,
Frun = Trus,null /Trus, is an estimate of fraction of the
RHS evaluation time unaffected by the selected expressions.
This estimate serves as a baseline value to compare the

60penCL™ (Open Computing Language) is a standard for parallel
programming available from http://www.khronos.org/opencl/

actual performance Fipjines against. The results are shown
in Table III.

In this table, Ny and N, are the number of state variables
and equations in each model respectively, while N, is the
number of those equations that could be simplified. Fiun
is an estimate of the best performance and Fipjines 1S the
actual performance of the RHS evaluation time reduction
measured as Fiplines = TRHS, splines /Trus- The run time of
an unoptimized one-second single cell simulation is given
as Tp and the performance using splines is given as Fjy =
T0.splines/To. The number of RHS evaluations made by the
adaptive method in these simulations is given as M for the
unaltered RHS and Mjines for the version using splines.
Finally, Fi = T splines/T1 represents the speed-up gained
in an unparallelized fixed step size cable simulation. Note
that the smaller the F-value, the larger the performance
gain using splines. The time taken to perform the spline
approximations was not included in any of the benchmarks.

C. Accuracy & performance

Experiments were run to asses the trade-off between spline
accuracy and run-time using the reduced Morris-Lecar model
for excitable cells (see Table I). The expressions for wiys,
Wyau and miye were each selected for simplification: spline
approximations were generated for each with an increasing
number of segments (from 2 to 200). For each generated
spline, a single cell simulation was run using CVODE.
All simulations were started from a common set of initial
values.” Results are shown in Figure 1.

As can be seen, increasing the number of pieces reduces
the error of fit almost without affecting the RHS evaluation
time, which shows a reduction to about 13% of the evaluation
time of non-optimized case. The difference between state
variable w with and without the approximation was tracked
and seen to stabilize around 10 pieces. Similarly, the number
of steps taken by the adaptive solving scheme and the total
number of RHS evaluations performed in a simulation reach
a stable average at about 5 pieces.

From these results we concluded that (1) Increasing the
number of pieces in a spline below the minimum number
required to achieve acceptable accuracy doesn’t dramatically
affect RHS evaluation time. As a result, no special strategy
to keep the number of pieces in a spline to a minimum is re-
quired. (2) Using spline approximations increases the number
of steps taken by the adaptive solver, but the increase does
not seem affected by the number of pieces. (3) The accuracy
of the produced result increases dramatically as spline quality
increases, but then stabilizes once the maximum relative error
of fit has gone below 1073.

We speculate that the unusually high and seemingly ran-
dom variation in the number of RHS evaluations and inte-
grator steps was caused by the higher order discontinuities
at the spline knots. This is briefly discussed in Section III-E.

7A similar test was run where models were “pre-paced” for 10° periods
before the steps taken were measured, but no significant difference with the
pre-pacing free case was found.

Relative error in spline fit
Total error in state variable w

% 3 —— RHS Evaluation time (original) ’; B
E 01F —— RHS Evaluation time (using splines) | 3
~00s) E

0

5001

y

bl bt A it bl
I AR I LA LA | M) B

N

(=3

=4
T

Steps / Evaluations
oo
(=3
(=}

[5~3
(=3
=3

Number of RHS evaluations per simulation 1
—— Number of steps per simulation]
H —— Values for original RHS

oo, A
0 50 100 150 200

Number of pieces of spline

Figure 1. Effects of the number of pieces in a spline. (A) The relative error
in the spline approximation and the resulting total error in state variable
w during a full simulation, calculated as e,, = ZZ (wi — wi,sphnes)
where w; and w; splines are the values of w at a 1000 linearly spaced
points during the simulation. (B) The average RHS evaluation time with
approximations using an increasing number of pieces and for the unmodified
RHS. (C) The number of steps taken by an adaptive solver and the number
of RHS evaluations performed during a simulation. Thick lines indicate the
corresponding values for the unoptimized RHS.

D. RHS Evaluation times

Right-hand-side evaluation times were measured using the
following procedure: A simulation was run and the state vec-
tor was saved for every position. Next, a benchmarking tool
revisited each state multiple times and measured the average
execution time per call. The results show that employing
spline approximation decreased the RHS evaluation time in
each case. However, the utility of function approximation
is seen to decrease with increasing model complexity. This
can be attributed to two factors: the inclusion of more
multivariate equations (for example signaling or intracellu-
lar diffusion processes) and the inclusion of more fast-to-
evaluate equations (for example Markov formulations of ion
channels).

For small models, the performance of the spline-based
RHS sometimes exceeds our calculated estimate. This can
be attributed to the difficulty of measuring small run times
and the many optimizations employed by modern compilers
and hardware, which make it difficult to get consistent
benchmarking results when comparing small run times.

E. Single cell simulation

Single cell simulations were run using a simulation built on
Myokit’s Simulation class, which creates, compiles and
executes C code using CVODE to integrate the ODE. The

Table III
MODEL RUN TIMES AND PERFORMANCE

l Model [Ns [Ne [Ny [Fhull [Fsplines [To [Fo [M [Maplines [Fy l

2009, Tran [18] 4 24 11 28% 17% 0.5ms | 69% 359 350 -

1991, Luo-Rudy [12] 8 37 17 30% 24% 1.7ms | 56% 847 773 25%

2009, Stewart [6] 20 106 38 50% 48% 3. 7ms | 80% 942 991 51%

2011, O’Hara [4] 41 249 67 53% 64% 12ms | 98% | 1483 2586 -

2009, Decker [19] 48 204 48 74% 72% 13ms | 88% | 1646 1594 73%

2010, Sampson [20] 81 299 107 | 39% 85% 38ms | 97% | 3277 3209 78%

2011, Heijman [3] 145 | 514 61 80% 88% 83ms | 98% | 4165 4071 89%
results show a smaller speed-up than expected on the basis of < 40F 3
the RHS performance alone. We initially hypothesized that E ¢ ‘ —— Membrane Potential ‘ 3
this may be due to the higher order discontinuities created at g 40§ 1A

. . o-40F E
the knots, but this would suggest a strong relation between & ¢
the number of pieces used and the number of steps taken. =8 T —————— 3
As can be seen in Table III no such relation was found. 100

. Load =1/ step-size
Tentative experiments using splines with higher orders of < 10k B
continuity failed to show a consistent performance gain in S 1}
terms of number of steps. By comparing the number of 0.15
RHS evaluations taken in simulations with and without spline 02-8(1); F——
approximations (given in Table III as M and Msgpyines) it 150 —— Number of steps ‘ E
can be seen that even with a reduced number of evaluations 100+ 1 C
the performance gain is not proportional to that in the RHS “ 50k E
evaluation times. This suggests overhead of the method is bl = e ! ‘ L]
a bigger factor in these simulations and the impact of RHS 0 200 400 600 800 1000
. . . Simulation time [ms]
run-time reduction is reduced. e T
To gain insight into the adaptive behavior of the CVODE 2 50 .

. . 2 40 e
solver, we implemented a tracking mode that logs the number & 39 1D
of evaluations taken and the system time at each step of ¢ %8]

a simulation. Figure 2 shows the results for a 1000ms =0 E— . bl
0 100 200 300 400 500

simulation using the model by Decker et al. [19]. As can be
seen from the top half of the figure, most of the work done
during a simulation occurs during the action potential (AP),
the period when the membrane potential is elevated from its
usual resting state of around —80mV. This example, which
is typical for ventricular myocyte models, shows how most of
the system’s fast dynamics are localized around the start and
finish of the AP. The lower half of the figure clearly shows
why this method is efficient in terms of RHS evaluations: the
most common number of evaluations needed at each step is 1
with occasional short burst of around 50 evaluations, leading
to an average of 3.1 evaluations per step throughout the
simulation. This average ranges from 1.6 to 6.0 evaluations
per step for the models described in Table III.

E. Multi-cell simulation

Non-parallel multi-cellular simulations were run using
Myokit’s Simulation1D class, which uses an explicit forward
Euler method to integrate the ODE. As described in Sec-
tion II-B, this is often the best approach for multi-cellular
simulations. Without a step-size choosing algorithm or other
complicating factors, it can be expected that the performance
boost in this scenario matches that seen in single RHS
evaluation times. A small number of tests were run which
clearly confirmed this notion so non-parallel data was not
included in Table III.

Step index

Figure 2. Number of steps and RHS evaluations taken by the CVODE
adaptive solver during a 1000ms simulation using Decker et al. (A) The
simulated membrane potential plotted against the simulated time. (B) The
load on the solver, calculated as the inverse of the used step size at each
simulated point in time, shown on a logarithmic axis. (C) A histogram of
the number of steps taken by the solver plotted against the simulated time.
(D) The number of RHS evaluations taken at each step of the simulation.
The full simulation is shown; note that the x-axis does not scale linearly to
the axes of the figures above.

An OpenCL-based parallel version of this simulation was
implemented, but was unable to produce any speed-ups on
a GPU. Indeed, we found that eliminating the simplified
calculations from the RHS entirely only lead to marginal
speed-ups, indicating that the RHS evaluation time is of
little importance in our parallel implementation. We suspect
that the overhead of memory access and synchronization in
this case is a bottleneck in our calculations. Further work
is needed to reduce this overhead before the benefits of
reduced RHS evaluation time for parallel cell simulation can
be judged.

IV. CONCLUSIONS & FURTHER WORK

Splines are a natural candidate for providing simplified
approximations to univariate functions occurring in the right-

hand side of a differential equation model of excitable cells.
In this paper, we showed that the use of cubic spline approx-
imations can reduce the time needed to evaluate the RHS of
an excitable cell model’s ODE. Further, the non-smoothness
of the approximation did not appear to negatively affect
the number of RHS evaluations needed by the sophisticated
implicit multi-step method used by the package CVODE.
The time benefit of this optimization was seen directly in
unparallelized multi-cell simulations, but failed to materialize
fully in single cell simulations using CVODE, and had no
effect on parallel multi-cell simulations using the forward
Euler method run on the GPU. We suggest that the RHS
evaluation time is overshadowed by overhead resulting from
the solver in the former case, and from overhead of memory
access due to the hardware architecture in the latter.

Given the speedups obtained in the evaluation of the RHS,
we believe that this method may still be useful in situations
where RHS evaluation time is a dominant factor, either in the
field of cellular electrophysiology or in other domains. Sim-
plification of multivariate functions using splines is possible,
but significantly more complicated. Further work is needed
to optimize our parallel solver to the point that the benefits of
RHS simplification become visible. Work is in progress on
computing optimal spline approximations of various degrees
in the uniform norm.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Enno de Lange for our
valuable discussions on cell models, model implementations
and writing for the GPU.

REFERENCES

[1] D. Noble and Y. Rudy, “Models of cardiac ventricular action potentials:
iterative interaction between experiment and simulation,” Philosoph-
ical Transactions of the Royal Society A, vol. 359, pp. 1127-1142,
June 2001.

[2] N.P. Smith, E. J. Crampin, S. A. Niederer, J. B. Bassingthwaighte, and
D. A. Beard, “Computational biology of cardiac myocytes: proposed
standards for the physiome.,” The Journal of experimental biology,
vol. 210, pp. 1576-1583, May 2007.

[3] J. Heijman, P. G. Volders, R. L. Westra, and Y. Rudy, “Local control
of (B-adrenergic stimulation: Effects on ventricular myocyte electro-
physiology and Ca(2+)-transient,” Journal of molecular and cellular
cardiology, vol. 50, no. 5, pp. 863-871, 2011.

[4] T. O’Hara, L. Virag, A. Varr6, and Y. Rudy, “Simulation of the undis-
eased human cardiac ventricular action potential: model formulation
and experimental validation.,” PLoS computational biology, vol. 7,
pp. €1002061+, May 2011.

[5] A. Mahajan, Y. Shiferaw, D. Sato, A. Baher, R. Olcese, L.-H. Xie, M.-
J. Yang, P.-S. Chen, J. G. Restrepo, A. Karma, A. Garfinkel, Z. Qu, and
J. N. Weiss, “A rabbit ventricular action potential model replicating
cardiac dynamics at rapid heart rates,” Biophysical Journal, vol. 94,
pp- 392410, Jan. 2008.

[6] P. Stewart, O. V. Aslanidi, D. Noble, P. J. Noble, M. R. Boyett, and
H. Zhang, “Mathematical models of the electrical action potential of
Purkinje fibre cells.,” Philosophical transactions. Series A, Mathemati-
cal, physical, and engineering sciences, vol. 367, pp. 2225-2255, June
2009.

[71 G. Olivetti, G. Giordano, D. Corradi, M. Melissari, C. Lagrasta,
Gambert, and P. Anversa, “Gender differences and aging: effects on
the human heart,” J Am Coll Cardiol, vol. 26, pp. 1068-1079, Oct.
1995.

[8] A. A. Mirin, D. F. Richards, J. N. Glosli, E. W. Draeger, B. Chan,
J.-1. Fattebert, W. D. Krauss, T. Oppelstrup, J. J. Rice, J. A. Gunnels,

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

et al., “Toward real-time modeling of human heart ventricles at cellular
resolution: simulation of drug-induced arrhythmias,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, p. 2, IEEE Computer Society Press,
2012.

K. H. ten Tusscher and A. V. Panfilov, “Alternans and spiral breakup in
a human ventricular tissue model,” American Journal of Physiology-
Heart and Circulatory Physiology, vol. 291, no. 3, pp. H1088-H1100,
2006.

J. Cooper, G. R. Mirams, and S. A. Niederer, “High-throughput
functional curation of cellular electrophysiology models,” Progress in
biophysics and molecular biology, vol. 107, no. 1, pp. 11-20, 2011.
G. W. Beeler and H. Reuter, “Reconstruction of the action potential
of ventricular myocardial fibres.,” J Physiol, vol. 268, pp. 177-210,
June 1977.

C. H. Luo and Y. Rudy, “A model of the ventricular cardiac action
potential. Depolarization, repolarization, and their interaction.,” Circ
Res, vol. 68, pp. 1501-1526, June 1991.

C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant
muscle fiber,” Biophysical journal, vol. 35, no. 1, pp. 193-213, 1981.
A. L. Hodgkin and A. F. Huxley, “A quantitative description of
membrane current and its application to conduction and excitation in
nerve.,” The Journal of physiology, vol. 117, pp. 500-544, Aug. 1952.
A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward, “SUNDIALS: Suite of nonlinear
and differential/algebraic equation solvers,” ACM Trans. Math. Softw.,
vol. 31, pp. 363-396, Sept. 2005.

V. M. Garcia, A. Liberos, A. M. Climent, A. Vidal, J. Millet, and
A. Gonzalez, “An adaptive step size gpu ode solver for simulating the
electric cardiac activity,” in Computing in Cardiology, 2011, pp. 233—
236, IEEE, 2011.

A. A. Cuellar, C. M. Lloyd, P. F. Nielsen, D. P. Bullivant, D. P.
Nickerson, and P. J. Hunter, “An Overview of CellML 1.1, a Biological
Model Description Language,” SIMULATION, vol. 79, pp. 740-747,
Dec. 2003.

D. X. Tran, D. Sato, A. Yochelis, J. N. Weiss, A. Garfinkel, and Z. Qu,
“Bifurcation and chaos in a model of cardiac early afterdepolariza-
tions.,” Phys Rev Lett, vol. 102, no. 25, p. 258103, 2009.

K. F. Decker, J. Heijman, J. R. Silva, T. J. Hund, and Y. Rudy,
“Properties and ionic mechanisms of action potential adaptation,
restitution, and accommodation in canine epicardium.,” Am J Physiol
Heart Circ Physiol, vol. 296, pp. H1017-H1026, Apr. 2009.

K. J. Sampson, V. Iyer, A. R. Marks, and R. S. Kass, “A computational
model of purkinje fibre single cell electrophysiology: implications for
the long qt syndrome,” The Journal of physiology, vol. 588, no. 14,
pp. 2643-2655, 2010.

